An Extremal Property of Entire Functions with Positive Zeros
نویسندگان
چکیده
منابع مشابه
Asymptotics of Zeros for Some Entire Functions
We study the asymptotics of zeros for entire functions of the form sin z+ ∫ 1 −1 f(t)e dt with f belonging to a space X →֒ L1(−1, 1) possessing some minimal regularity properties.
متن کاملConvolution Operators and Zeros of Entire Functions
Let G(z) be a real entire function of order less than 2 with only real zeros. Then we classify certain distributions functions F such that the convolution (G ∗ dF )(z) = ∫∞ −∞G(z − is) dF (s) has only real zeros.
متن کاملAn extremal problem for a class of entire functions
Let f be an entire function of the exponential type, such that the indicator diagram is in [−iσ, iσ ], σ > 0. Then the upper density of f is bounded by cσ , where c≈ 1.508879 is the unique solution of the equation log (√ c2 + 1 + c) =√1 + c−2. This bound is optimal. To cite this article: A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Publishe...
متن کاملConvolution Operators and Entire Functions with Simple Zeros
Let G(z) be an entire function of order less than 2 that is real for real z with only real zeros. Then we classify certain distribution functions F such that the convolution (G ∗ dF )(z) = ∫∞ −∞ G(z − is) dF (s) of G with the measure dF has only real zeros all of which are simple. This generalizes a method used by Pólya to study the Riemann zeta function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 1989
ISSN: 0213-2230
DOI: 10.4171/rmi/84